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Virtual screening with solvation and ligand-induced
complementarity

VOLKER SCHNECKE and LESLIE A. KUHN
Protein Structural Analysis and Design Laboratory, Department of Biochemistry, Michigan
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Summary. We present our database-screening toalb&, which is capable of screening

large data sets of organic compounds for potential ligands to a given binding site of a target
protein. Its main feature is the modeling of induced complementarity by making adjustments
in the protein side chains and ligand upon binding. Mean-field theory is used to balance the
conformational changes in both molecules in order to generate a shape-complementary inter-
face. Solvation is considered by prediction of water molecules likely to be conserved from the
crystal structure of the ligand-free protein, and allowing them to mediate ligand interactions,
if possible, or including a desolvation penalty when they are displaced by ligand atoms that
do not replace the lost hydrogen bonds. A data set of over 175 000 organic molecules was
screened for potential ligands to the progesterone receptor, dihydrofolate reductase, and a
DNA-repair enzyme. In all cases the screening time was less than a day on a Pentium Il
processor, and known ligands as well as highly complementary new potential ligands were
found.

Key words: bound water, dihydrofolate reductase, DNA repair enzymes, docking, drug design,
flexibility, molecular recognition, progesterone receptor

Introduction

Screening a large database of organic compounds for potential ligands to a
protein is often seen as a simple extension of the docking problem, which is
the prediction of the favorable binding mode for a single ligand. When doing
ligand screening by docking, as in our screening toolbg, the docking
problem must be solved for each ligand candidate in the database. But, be-
cause hundreds of thousands of ligands are screened, the time that a screening
tool can spend for each compound must be far less than several minutes,
which is the typical runtime for fast docking tools that model full ligand
flexibility [1-3]. When spending only one minute per compound, the screen-
ing time for a database of 100 000 molecules is about 10 weeks. In order to

* To whom correspondence should be addressed. E-mail: kuhn@agua.bch.msu.edu.
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reduce the runtime to a realistic time frame, say, a day, it is first important to
efficiently rule out infeasible candidates, then to focus on the few promising
molecules in the database.

The limitation of the time for conformational search in a screening tool
also affects its scoring function, which is used to rate the complementarity of
protein and ligand in a given conformation. Rather than estimating the bind-
ing affinity, a computational intensive and still imprecise science, the goal
of the scoring function in a screening tool is to give an appropriate relative
ranking for the potential ligands, with known or new ‘real’ ligands obtaining
top ranks. Ideally, such a scoring function should be robust, with real lig-
ands obtaining high scores irrespective of their exact binding mode. Another
important and often neglected aspect of docking and database screening is
the induced shape complementarity of the protein upon ligand binding. Many
cases are known in which the binding site undergoes significant conform-
ational changes when binding different ligands [4—6]. When assessing the
quality of docking tools, typically known ligands are redocked into fixed
binding sites that are tailored to bind that very ligand, since they are taken
from the corresponding crystallographic complex. Although this is likely to
bias the selectivity for the known ligand and its score relative to other candid-
ates, the effect might be minor for lead optimization, where similar ligands
are docked to compare their binding modes and relative affinities. However,
when screening compounds from a database for lead discovery, bias towards
known ligands should be avoided in the search. Our approach is to screen us-
ing the ligand-free conformation of the target protein, when available, and to
model induced complementarity for the protein side chains as well as ligand
when screening and docking a large variety of potential ligands.

In this article, we describe applications of our screening taobs [7],
which is able to reduce large compound databases of more than 175 000
organic molecules to a ranked list of approximately 100 docked potential lig-
ands within an hour to two days, depending on the binding-site characteristics
and degree of flexibility in the screened molecules. In addition to ligand flex-
ibility, SLIDE models full flexibility of ligands and protein side chains when
docking potential ligands, and us€onsolv[8] to predict water-mediated
interactions with the ligand.

Background

The majority of results reported for database screening are based on the ap-
plication of tools that were designed to predict the favorable binding mode
and the binding affinity for a single ligand. Several docking tools are avail-
able, and they are widely used for structure-based ligand design [2,3,9-19].
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Docking tools can be classified by the method they use to represent the bind-
ing site, by the technique for sampling ligand conformations, and by the way
they construct the docked ligand. All docking tools fast enough to screen a
large data set of molecules are based on so-called descriptor-matching ap-
proaches [20], which means that they represent the binding site by a template
of points, onto which ligand atoms are mapped during the search. The tem-
plate points can describe the shape of the binding site [9,21], or favorable
chemical interaction centers above the protein surface, where hydrogen-bond
donors or acceptors, metal ions, or hydrophobic groups of the ligands can
be placed [1-3,11,22]. During the search for the optimal binding mode of
a ligand, different conformers for the molecule are generated, which can
be done randomly, e.g., by using a genetic algorithm [16,17,19,23], or by
systematically sampling discrete torsional angles for the rotatable bonds of
the ligand [1-3]. The faster docking tools construct the ligand incrementally
in the binding site [2,3], or dock fragments of the ligand independently and
chemically link them later, if the combination is feasible [1,12—-14,24]. All
docking tools that have been used for database screening employ a binding-
site template for guiding the search and incremental construction of the ligand
in the binding site [1,25-30].

While all recent docking tools consider full ligand flexibility, induced
complementarity of the protein upon ligand binding is not modeled, at least
not in the faster docking tools. In approaches that model protein flexibility,
this is often limited, e.g., by only rotating terminal hydrogens to optimize in-
termolecular hydrogen bonding [16,17], or by using rotamer libraries for the
side-chain conformations [31,32]. Other approaches model explicitly defined
side-chain flexibility [33], hinge bending [34], or they dock ligands against
an ensemble of protein structures [35]. Molecular dynamics simulations [36—
38] may vield the most realistic models of protein and ligand flexibility, but
the resulting runtime for docking a single ligand is likely to be in the range of
hours.

A drawback of many docking tools is that they neglect the effect of binding-
site solvation and the potential for water-mediated interactions between pro-
tein and ligand [8,39—-42]. While it is certainly possible to consider bound
water molecules as part of the rigid protein in most docking tools, recently
three sophisticated approaches have been reported, which either predict con-
served binding-site waters [8], compute potential water positions prior to
docking [43], or solvate the ligand molecule [29].

Recent docking and screening tools can identify potential ligands from up
to 150 000 compounds within a few days, when considering full ligand flexib-
ility [1,25-28,44]. Even in the absence of modeling inducible complementar-
ity and solvation, there have been successful project reports in structure-based



174

lead discovery or design, including the identification of new inhibitors for
thymidylate synthase [25R. carinii dihydrofolate reductase (DHFR) [2'R,
falciparum DHFR [45], trypanothione reductase [46], and human thrombin
[47]. Our goal with the new screening toalIBE is to incorporate a balanced
model of protein and ligand flexibility as well as a knowledge-based model of
solvation that is fast enough to be used for screening and docking hundreds
of thousands of compounds.

Methods: The screening tool Sipe

SLIDE (for ‘Screening for Ligands by Induced-fit Docking’) can screen data-
bases of 3D structures of over 100 000 small organic molecules, typically
within hours to a day, on an ordinary desktop workstation. It has also been
used for screening 185 000 peptides, which are more flexible, within a
few days [7,48]. 8IDE uses multi-level hashing, mean-field theory, and an
empirically tuned scoring function to efficiently recognize infeasible com-
pounds, dock the most promising ligand candidates, and produce a ranked
list of some 100 potential ligands for a given protein target.

Representing the binding site

The binding site of the protein is described by a template of favorable inter-
action points above its surface, onto which ligand atoms are mapped during
the search. A template includes four different types of points:

e Hydrogen-bond donor point. During screening, SDE can place a
hydrogen-bond donor of the ligand onto this point, which is determined
to be within favorable hydrogen-bonding distance of a protein hydrogen-
bond acceptor.

e Hydrogen-bond acceptor point.Each acceptor point is within favor-
able hydrogen-bonding distance of a protein hydrogen-bond donor.

e Hydrogen-bond donor/acceptor point.This is within hydrogen-bond-
ing distance of both a hydrogen-bond acceptor and a donor of the pro-
tein, so either a ligand hydrogen-bond donor or acceptor can be placed
here, or a group that can accept and donate at the same time (e.g., hy-
droxyl oxygen).

e Hydrophobic interaction center. These points are placed above a hy-
drophobic surface patch of the protein, and are matched by the centers
of the most hydrophobic ligand groups, hydrocarbon rings.
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The template can be automatically generated based on the ligand-free struc-
ture of the protein, which reduces bias towards known ligands. For automatic
template generation, the binding site is filled with random points that are 2.5
to 5.0 A from a protein atom. To determine favorable hydrogen-bonding po-
sitions, each of these points is checked for donors or acceptors in the protein
within a distance of 2.5 to 3.5 A; for protein hydrogen-bond donors, the angle
between the donor, the donated hydrogen, and the probe point is also taken
into account, and must be larger than 128ydrophobic points are located
between 3.5 and 5.0 A from the nearest protein atom. For these points, the
average hydrophilicity of all protein atoms within 5.0 A is below 0.1, indic-
ating a hydrophobic site (based on the values provided in Reference 49). All
points of the same type are then clustered using complete-linkage clustering
[50] to yield a computationally tractable number of template points (typically
up to 200). Similarly, interaction points in each potential ligand are defined
as those that can act as hydrogen bond acceptors, donors, acceptors and/or
donors (e.g., hydroxyl oxygen atoms), or hydrophobic centers. The latter are
defined as the centers of hydrocarbon rings with 6 or fewer carbon atoms
(e.g., cyclohexane or benzene rings). Hydrogen-bond donors or acceptors in
the ligand candidates are identified for oxygen, nitrogen, sulfur, and halogen
atoms based on the molecular orbital type, valency, and presence of hydrogen
atoms in ¥BYL mol2 format files prepared for each molecule in the ligand
database. The interaction points in ligand candidates are mapped onto points
in the binding site template having the same chemistry.

Alternatively, the template can be defined based on interaction patterns ob-
served in complexes with known ligands, biasing the search towards ligands
with similar interaction patterns, similar to pharmacophore-based screens.
For either the ‘unbiased’, automatically generated templates, or templates
designed based on known ligand binding, special key interaction points that
must be matched by the ligand can also be included. This is useful to ensure
that a certain part of the binding site is covered, or that a docked ligand makes
particular interactions. Beyond the template, which governs the selection of
complementary ligands, the binding site of the protein is represented by a
shell of surface residues and water molecules likely to mediate protein-ligand
interactions.

During the ligand search, all triangles of hydrogen-bond and hydrophobic
interaction points in the screened molecules are mapped exhaustively onto
triangles of template points with compatible geometry and chemistry, and
such a mapping serves as a basis for docking a molecule into the binding
site. A multi-level hashing approach is used to directly access all template
triangles with feasible chemistry and geometry for a given set of three inter-
action centers in the ligand. Before the search, all possible template triangles
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are generated from the set of binding-site template points, and are indexed
via four levels of hash (indexing) tables. The indices in these hash tables are
based on the chemistry (H-bond donor/acceptor or hydrophobic) of the three
triangle points, on the perimeter of the triangle, and then on the longest and
the shortest side for each of the indexed template triangles. By using these
four properties for a given triplet of interaction centers in a ligand candidate,
all template triangles with compatible geometry and chemistry can be dir-
ectly and very efficiently accessed. For feasible matches between each ligand
triangle and template triangle, the geometrically best mapping is computed,
which is then used to transform the ligand triangle onto the corresponding
template points by applying a least-squares fit superposition. When including
key points in the template, only those triangles that include at least one of
these key interaction centers are indexed in the hash tables.

Docking the anchor fragment

The matched ligand interaction centers define the anchor fragment, which is
the part of the molecule containing the three interaction centers. To maintain
the distances between these matched points, all flexible bonds within this
anchor fragment are rigidified. All chemically and geometrically feasible an-
chor fragments are then exhaustively tested in each ligand candidate for their
ability to match triangles within the protein template. Collisions of the anchor
fragment with protein main-chain atoms are resolved by iterative translations
of the fragment as a rigid body. For this, a global translation vector is used to
shift the anchor fragment the minimal amount necessary to resolve all colli-
sions [5]. If all main-chain collisions can be resolved, the remaining atoms of
the ligand are added to the anchor fragment in the conformation found for the
molecule in the database. These atoms outside the anchor fragment are con-
sidered flexible, such that all single bonds in these parts can be rotated later, to
resolve collisions with protein atoms. At this point we retain only those ligand
dockings with at least 50% of their carbon atoms buried against the protein
in order to keep only those dockings with good shape complementarity and
minimal exposure of hydrophobic atoms to solvent; our analysis of 89 known
protein-ligand complexes [51] showed they all met this criterion [7].

Modeling induced complementarity

Induced fit between the two molecules is modeled by resolving any colli-
sions of their flexible parts by directed rotations of single bonds in either
the ligand or side chains of the protein. This follows the paradigm that in
most cases the two molecules will move as little as possible in order to
be shape-complementary. There are typically several rotations that will re-
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solve an intermolecular collision, and an approach based on mean-field theory
[32,52,53] is used to decide which rotations to use to improve the shape
complementarity.

For each pairwise intermolecular collision, the bonds in each molecule
that can resolve the collision are identified. They are stored in a system to-
gether with the corresponding minimum rotation angle and the number of
non-hydrogen atoms that will be displaced by the rotation. These two values
provide the basis for a force measuring the cost of the rotation. A probability
is assigned to each rotation, and all rotations that can be used to resolve one
particular collision are initialized with equal probabilities. During several
cycles of the mean-field optimization, these probabilities are updated and
converge to higher values for those rotations that represent a globally optimal
choice. When applying these rotations, a maximal number of collisions is
resolved with minimal conformational changes in both molecules, without
bias to one or the other; details of the mathematics of this procedure are
provided in Reference 7.

In each cycle of the mean-field optimization process, a mean force is com-
puted for each rotation in the system, which is based on the force associated
with this rotation and its correlations with other rotations in the system. The
probabilities for all rotations in the system are updated at the end of each
cycle, taking into account the mean forces of alternative rotations for the same
collision. We do 10 cycles of the optimization, then the probabilities have
typically converged to define a near-optimal set of rotations. All feasible ro-
tations are applied in the order provided by the computed probabilities. Since
it is likely that not all rotations can be resolved and that new collisions might
have emerged, the mean-field optimization process is iterated up to 10 times.
Intramolecular collisions are also tolerated, since it is assumed that they will
be resolved in a future iteration. The result of the mean-field optimization
process is either the exclusion of a molecule as infeasible, if collisions cannot
be resolved, or a shape-complementary docking of the two molecules.

Considering binding-site solvation

In order to not bias the search towards known ligands, we typically use the
binding site from a ligand-free crystal structure of the target protein for screen-
ing. Water molecules are often observed in these crystal structuresi.a S
can consider tightly bound waters when docking potential ligands. The cur-
rent approach is to either translate a water molecule, if it overlaps with a
ligand atom after docking the ligand into the binding site, or to displace it. A
bound water molecule is only displaced if its collisions cannot be resolved by
iterative translations, which are computed by summing the translation vectors
that resolve each collision between the water molecule and a protein or ligand
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atom. SIDE considers a penalty term for each displaced water when scoring
a complex, and only displacements by non-polar ligand atoms are penalized.

To select which protein-bound water molecules to include in the screen-
ing and docking, we use a knowledge-based approach to determine those
waters likely to be conserved upon ligand binding and to fix a penalty for
their displacement. The to@onsolv[8], a k-nearest-neighbor classifier, is
used to predict which binding-site waters will be conserved and which will
be displaced upon ligand bindinGonsols prediction is based on several
features that describe the favorability of the local environment of a water
molecule, and its knowledge base is a set of 5542 water molecules taken from
30 independently solved protein structures. Prior to screening, we remove all
waters that are predicted to be displaced and for the remaining waters we use
Consolvs prediction confidence to scale the penalties for their displacement.
To compute the penalty, we count the number of hydrogen bonds that are
lost by displacing this water and scale this numbeiQmnsolvs prediction
confidence (between 50 and 100%).

Scoring a potential ligand

Whenever a collision-free complex is generated, a score is assigned to the
ligand based on the number of intermolecular hydrogen bonds and the hydro-
phobic complementarity of its interface with the protein. If not provided in
the protein or ligand structure, the position of the shared hydrogen in each in-
termolecular hydrogen bond is computed. This position is well-defined for all
but the terminal hydrogens in lysine and hydroxyl side chains; for these cases
we choose the optimal hydrogen position subject to bonding constraints. All
hydrogen bonds with a donor—acceptor distance up to 3.5 A and a donor-
hydrogen-acceptor angle larger than 26ntribute equally to the score. If
water molecules are included in the interface, all water-mediated hydrogen
bonds are also counted. Intra-protein hydrogen bonds that were broken due
to the rotation of a protein side chain, or hydrogen bonds to waters that were
displaced upon ligand docking, lower the overall hydrogen-bond count by the
number of lost hydrogen bonds. Note that this does not penalize the displace-
ment of a water molecule by a polar ligand atom that preserves the hydrogen
bond to the protein. The number of hydrogen bonds lost by displacing water
molecules is weighted bgonsolvs prediction confidence of their displace-
ment. The final intermolecular hydrogen-bond score between protein P and
ligand L, reflecting loss in intra-protein and water-mediated hydrogen bonds,
is HBONDS(P,L).

For computing the hydrophobic complementarity value, atomic hydro-
philicity values were taken from a statistical survey of hydration of the differ-
ent atom types in 56 protein structures [49] (hydrophobicity values for protein
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atoms were taken from Table Il and values for ligand atoms from Table Il
in Reference 49). The contribution of a single ligand atom is based on the
comparison of its hydrophobicity value with the average hydrophobicity of
the surrounding protein surface atoms [7]. Given the hydrophobidity

of an atoma, with h(a) € [0...635 calculated as the average number of
hydrations per 1000 occurrences of that atom type (Table Il in Reference 49),
a value of 0 represents a maximally hydrophobic atom, 635 is maximally
hydrophilic, and 317 is intermediate. The hydrophobic complementarity of
the contact surface between protein P and ligand L is computed as:

avgih'(;), h(P,)}
>

HPHOB(P,L)= =
(P.L) maxabs(A'(;) — h(P;)), 32)

liEL,#P,'>0

where
h' ;) = max{317— h(;), 0}

considers only the hydrophobic contribution of ligand atdgmsince values
larger than 317 refer to hydrophilic atoms. The hydrophobigity;) of the
protein neighborhood; for a single ligand atony is defined as the average
hydrophobic contribution of all protein atoms within a distance of 4.0 A
of the ligand atoni;:

_ 1
R(P) = max{ (317 20 - > h(pj)),0}

pj€Pi

The denominator in each term of the sum describing the hydrophobic score,
HPHOB(P,L), is always greater than or equal to 32, which is 10% of the max-
imum score for a single ligand atom. This ensures that the overall HPHOB(P,L)
score is not dominated by a few contacts with very small differences between
protein and ligand hydrophobicity.

The scoring function SCORE(P,L) for a collision-free complex is a linear
combination of the hydrophobic and hydrogen-bond terms:

SCOREP,L) = A - HPHOB(P, L) + B - HBONDS(P, L)

The relative contribution of these terms was tuned for best fit to the exper-
imentally determined affinities of 89 protein-ligand complexes [51], giving
the weight of 1.3:1.0 for the hydrogen-bond term relative to the hydrophobic
term.
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Results

SLIDE was previously used to screen for potential ligands to a bacterial aspar-
tic protease, the human estrogen receptor, glutathione transferase, and HIV-1
protease [7,48]. Here, we screen for potential ligands to human uracil-DNA
glycosylase (coordinates of a complex with 6-amino-uracil provided by C.
Mol and J.A. Tainer, The Scripps Research Institute), to the ligand-binding
domain of the human progesterone receptor (PDB entry 1a28), akd to
coli dihydrofolate reductase (PDB entry 1ra9). The modeling of inducible
complementarity and the control of molecular diversity in the set of poten-
tial ligands found by SIDE has been described elsewhere [7], and here we
include knowledge-based solvation.

We screened two different databases for the three target proteins:

e A subset of 70113 compounds taken from the Cambridge Crystallo-
graphic Database System (CSD, http://www.ccdc.cam.ac.uk). These are
all organic compounds with less than 100 atoms and at least three inter-
action centers that can be mapped onto template points.

e 105517 compounds from the NCI database (http://dtp.nci.nih.gov), which
were taken from the conformers for the open set of this database as they
were prepared by the group of J. Gasteiger using CORINA [54].

We used different approaches for designing the binding-site templates. The
smallest template, consisting only of six points, was generated for the proges-
terone receptor. The interaction points were generated based on the centers of
four carbon rings and two ketone oxygen atoms in the progesterone bound to
the receptor in PDB entry 1a28, resulting in a template consisting of four hy-
drophobic and two acceptor points. One water molecule, which interacts with
the bound progesterone in this structure was included in the binding site dur-
ing screening. A search with such a small template is like a pharmacophore-
based search, which restricts the set of potential ligands thatSinds to
compounds more or less similar to the known ligand, since that ligand and
each potential new ligand share at least three interaction centers due to the
triangle matching during docking. With this small template for the progester-
one receptor, the total screening time for the more than 175000 compounds
was about nine minutes on an Intel Pentium 11/450 processor running Solaris
2.7. Figure 1 shows a typical example of the kind of ligandb& found

for this screen with the small template. The ligand i& 16« -cyclopenteno-
progesterone (CSD entry BUBRUJ), which is the known ligand progesterone
with a cyclopentene substituent added to its D ring. It obtained a score of 39.9,
which ranks it 52th out of the 175 630 screened compounds. The highest-
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Figure 1. A cyclopenteno-progesterone (grey) from the CSD (entry BUBPUJ) was identi-
fied as a potential ligand and docked byISE into the ligand-binding site of the human
progesterone receptor (PDB 1a28). The template was based on six interaction centers of the
progesterone from the crystal structure, which is shown in yellow tubes and is overlaid virtu-
ally exactly by $IDE’s ligand. To fit the additional cyclopentene substituent, four side chains

in the receptor underwent minor conformational changes; their native conformation is shown
in yellow, and SIDE’s conformation for these side chains is colored by atom type (green:
carbon; red: oxygen). Note that the hydrophobic cyclopentene is in contact with hydrophobic
groups in the receptor.

ranked progesterone from the CSD received a score of 37.4. A total number of
154 potential ligands were docked into the binding site and obtained a score
higher than 35, which is a reasonable cutoff for ligands similar in size and
chemistry to the known ligand. Like the progesterone in the crystal structure
in PDB 1a28, this ligand makes one water-mediated hydrogen bond. To fit the
highly rigid cyclopentene-progesterone into the binding site, adjustments in
protein side chains were necessary. The figure shows four side chains in their
native conformation together with the final, rotated conformation proposed by
SLIDE. Note that only minor rotations were necessary to accommodate the
cyclopentene, which demonstrates favorable hydrophobic complementarity
with the neighboring side chains in the progesterone receptor.

In the screening for ligands for the human uracil-DNA glycosylase [55,56],
the binding site was taken from a crystal structure of a complex with 6-amino-
uracil bound deep in the active-site cleft. Twelve water molecules from this
structure were predicted as being conservedbpsolvand included in the
binding site during screening. A known inhibitor for this DNA-repair enzyme
is a 84-residue protein that mimics DNA but binds irreversibly to the glyc-
osylase [57]. We used the positions of five H-bond donors and acceptors in
the bound 6-amino-uracil as key points (out of which at least one must be
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Figure 2. The structure of 6-amino-uracil, the ligand present in the crystal structure of the
human uracil-DNA glycosylase used for screening, is shown together with two highly-ranked
molecules suggested by ®E as potential ligands for this enzyme.

matched by any potential ligand) in a template consisting otherwise of 150
automatically generated interaction points. The cumulative screening time
for both databases was slightly over 17 h. Figure 2 shows the structure of
6-amino-uracil and two of SDE’s ligands, one with obvious resemblance
to the known ligand. Figures 3 and 4 show these ligand<.iDSs binding
modes together with key side chains and waters that interact with them. The
ligand in Figure 3, CSD entry PICTIE, obtained a score of 32.8 and rank
55 with three water-mediated interactions to the protein, and the ligand in
Figure 4, NCl entry 39807 (CAS 6313-89-9), obtained a score of 27.2, which
ranked it 384th in the set of 683 potential ligands that were docked.IDES
and scored higher than 25.0 out of the data set of over 175 000 compounds
that were screened. The latter ligand binds similarly to 6-amino-uracil, but
shows better complementarity due to additional water-mediated hydrogen
bonds to the protein.

In the screening runs agairist coli dihydrofolate reductase (PDB entry
1ra9), again a hybrid template design was used. To ensure that all ligands
docked by $IDE interact with the side chains binding pyrimidine in the
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Figure 3. This figure shows '3deoxysangivamycin (CSD entry PICTIE), which was docked

by SLIDE as a potential ligand into the active site of human uracil-DNA glycosylase, a
DNA-repair enzyme. Key side chains and binding-site waters that interact with the ligand
are shown, and feasible hydrogen bonds are indicated by dotted lines. Two side chains of the
enzyme, a phenylalanine and a glutamine, were rotated llyeo accommodate the ligand

and are also shown in their original conformation (yellow).

Figure 4. A ligand from the NCI database (entry 39807), docked by into the active site

of human uracil-DNA glycosylase. It mimics the binding of 6-amino-uracil, the ligand bound

in the structure that was used for screening. This ligand shows better complementarity than the
original one, due to the additional carboxylate group that interacts with two conserved waters
and a histidine side chain.
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Figure 5. Two CSD compounds that were selected and docked into the active site of
dihydrofolate reductase byt ®E and obtained high scores. Both are known DHFR inhibitors.

known ligands methotrexate and dihydrofolate, two runs of the automatic
template generator were done: one to specify 23 key points located in the
pyrimidine region of the binding site, and another to fill the remaining part of
the binding site with 64 additional template points. Four binding-site waters
from the crystal structure of the ligand-free DHFR were predicted to medi-
ate interactions and included during screening. The screening time for the
175 000 compounds was about 14 h. In the set of potential ligands identified
by SLIDE were at least two known DHFR inhibitors (Figure 5), and their key
interactions are shown in Figures 6 (CSD entry JOXTIZ) and 7 (CSD entry
FIRNID). SLIDE’s scores for these ligands were 51.1 and 51.9, which ranked
them 205th and 141th, respectively. Both ligands place a pyrimidine group
in the same site, and the adamantyl-pyrimidine (FIRNID, Figure 7) binds
deeper in the corresponding cleft. In the docking of CSD ligand JOXTIZ
(Figure 6) a second water molecule fills the non ligand-occupied space. This
water was displaced by an amino group in the docking of CSD ligand FIRNID
(Figure 7), which replaces the hydrogen bonds to the other water and to the
aspartic acid side chain of DHFR, so that this displacement was not penalized
in SLIDE’s score.
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Figure 6. Methylbenzoprim (CSD entry JOXTIZ), a known potent DHFR inhibitor, docked
by SLIDE into the active site oE. coli dihydrofolate reductase. The ligand was selected by
SLIDE out of 175 000 compounds in the screening database. Its pyrimidine group binds in
the same cavity as the pyrimidine of the natural ligand, dihydrofolate, which was aided by
positioning key template points in that area. The deeper part of this cavity is occupied by
two bound water molecules, which were observed in the ligand-free protein structure that
was used for screening (PDB 1ra9) and predicte@€bgsolvas being conserved upon ligand
binding. One side chain, a leucine, was rotated byp®& upon ligand docking, and its original
conformation is shown in yellow.

Discussion

SLIDE is an efficient database screening tool, which searches data sets of
structures of more than 175000 organic compounds within minutes, when
using a small template, as we did in the case of the progesterone receptor
screen, or within several hours, as shown for uracil-DNA glycosylase and di-
hydrofolate reductase, where we used a more general binding-site template. It
accomplishes this by using an efficient multi-level hashing scheme to directly
access triplets of feasible interaction points in the binding-site template, onto
which triplets of ligand interaction centers are mapped. On one hand this is a
straightforward way to compute a transformation of the ligand into the bind-
ing site, so that the ligand already makes three favorable interactions, and on
the other hand it is also an efficient way to rule out infeasible compounds: all
compounds that lack a set of three favorable interactions are discarded before
attempting docking into the binding site. For the progesterone receptor with
the very specific 6-point template, more than 163 000 compounds, i.e., 93%
of the screening databases, never needed to be docked into the binding site
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Figure 7. Another known inhibitor for DHFR found by ISDE in the CSD: 2,4-dia-
mino-5-(1-adamantyl)-6-methylpyrimidine (CSD entry FIRNID), which binds with higher
affinity to DHFR than methotrexate [65]. Again, the pyrimidine ring is located in the targeted
area of the binding site and makes one water-mediated interaction. The other water molecule
located in that area (shown in Figure 6) was displaced by a polar amino group, resulting in no
desolvation penalty. Note the hydrophobic complementarity of the side chains in contact with
the adamantan (yellow indicates their initial conformations).

for this reason. For more general templates, like the 155-point template for
uracil-DNA glycosylase, docking and conformational search were performed
for more than 70 000 compounds (40% of the database).

Early in the development of .$DE, we tried to reduce the complexity of
the conformational search for the protein by using a rotamer library for the
side chains, which had been done in docking approaches [31,32]. However,
in the majority of cases all rotamers cause new collisions, and in a recent
study it was shown that side chains close to ligand-binding sites tend to adopt
non-rotameric conformations [58]. In most cases, including the examples de-
scribed above, only minor rotations in both ligand and protein are necessary
to generate a shape-complementary interface. These rotations are computed
exactly by SIDE, avoiding costly sampling of rotational angles.

The conformational search is the most computationally complex step of
screening with SIDE. Our model of flexibility is more realistic than that in
docking or screening tools that only consider ligand flexibility, since ligand
and protein flexibility are treated equally, and the mean-field optimization
selects those rotations for resolving collisions that cause the minimal overall
distortion for the complex. Full conformational search is not done for the
ligand, but rather its database conformation is used as a starting conformation
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for docking. Since the structures for potential ligands are taken from crystal
structures (CSD) or rule-derived models (NCI), they begin in a low-energy
conformation. To deal with cases where the binding conformation of a ligand
is very different from the database conformation, the database can be enriched
by a series of low-energy conformers for screening [28,59].

Although our scoring function was empirically tuned based on published
affinities for PDB complexes, we do not try to predict precise binding affin-
ities in SLIDE. Several empirically derived scoring functions can be found in
the literature [51,60—-65]. Scoring functions sensitive to small conformation
changes may not be appropriate for a screening tool likee§ which cannot
perform a conformational search for 100 000 or more ligand candidates. A
sensitive scoring function is more appropriate in a fine-docking tool, which
must predict differences in binding affinities for very similar conformations
of a complex during the search. The scoring function imbg& is designed
instead to rank the set of all potential ligands based on their complementarity.
All examples described above were ranked within the top potential ligands
for each target protein. LOE includes a web-based interface that enables
the user to easily browse through the potential ligands and visualizeES
docking.

The inclusion of binding-site solvation is in accordance with our models
of induced fit and scoring. The positions of water molecules in the binding
site from the crystal structure of the target protein are analyzed, and those
predicted as conserved lyonsolvare kept. In contrast to a method that
precomputes several favorable water positions prior to docking, then picks
the best positions to fill gaps between the molecules [43 S starts with
‘real’ water molecules and shifts them when they collide with ligand atoms.
As in the conformational search, the idea is to start with a reasonable con-
figuration and make only minimal changes, as necessary. If the collision of a
water molecule cannot be resolved, the water is displaced and a desolvation
penalty term is only applied when a lost hydrogen bond is not replaced by a
corresponding protein-ligand interaction.

While SLIDE’s docking procedure must be very quick, rather than com-
prehensive, in order to screen a large number of molecules, its inclusion of
protein flexibility and solvation givesl$DE advantages over other docking
procedures. Because of the fast screening timeyeScan be used to search
very large compound databases for the discovery of novel lead structures,
and due to distinguishing a rigid anchor fragment for each screened molecule
attached to flexible side chains, it will be straightforward to extend S for
combinatorial screening.
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