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Summary

For the successful identification and docking of new ligands to a protein target by virtual screening, the essential
features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the
running time for docking increases exponentially with the number of points representing the protein and each
ligand candidate, it is important to place these points where the best interactions can be made between the protein
and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand
design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In
this paper, we present an alternative method of protein template and ligand interaction point design that identifies
the most favorable points for making hydrophobic and hydrogen–bond interactions by using a knowledge base.
The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and
resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and
glutathione S–transferase (GST) ligands against the apo structures of these proteins. There was also improved
scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands
and a ∼15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the
most important points of interaction between proteins and their ligands can equally well be used in other docking
and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand
docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is
another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.

Abbreviations: PDB – Protein Data Bank, CSD – Cambridge Structural Database, GST – glutathione S-transferase,
HIV – human immunodeficiency virus, RMSD – root mean square deviation.
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Introduction

Protein function centers on the specific recognition
and binding of other molecules. Identifying the struc-
tural and chemical interactions that are most important
in protein-ligand binding can help us understand how
proteins screen the ambient molecules to select their
molecular partners. This knowledge can also be ap-
plied to develop new, protein–specific ligands for dis-
ease therapy and help elucidate the roles of the increas-
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ing number of proteins with known 3-dimensional
structure but unknown function. Our ligand dock-
ing and screening software, SLIDE (Screening for
Ligands by Induced-fit Docking, Efficiently) [1–
3] models flexible protein-ligand interactions based
on steric complementarity combined with hydrogen
bonding and hydrophobic interactions. SLIDE, as used
here, can also provide a test bed for modeling the im-
portance of different factors in molecular recognition.

SLIDE efficiently eliminates infeasible ligand can-
didates using geometric indexing and distance geom-
etry filtering on discrete representations of the protein
and ligand candidates. Approximately 100,000 small
molecules can be screened and docked in a day on a
typical desktop workstation. Because SLIDE models
protein side-chain and ligand flexibility, it can iden-
tify and correctly dock diverse, known ligands into
the ligand-free conformation of the binding site for
a variety of proteins (e.g., subtilisin, cyclodextrin,
glycosyltransferase, uracil DNA glycosylase, rhizo-
puspepsin, HIV protease, estrogen receptor, and Asn
tRNA synthetase) [1–4, Schnecke and Kuhn, Proteins,
in review]. Scoring of the docked protein-ligand com-
plex by SLIDE is based on the number of hydrogen
bonds and the hydrophobic complementarity between
the ligand and its protein environment. The main steps
involved in screening with SLIDE are shown in Fig-
ure 1, and the algorithm has been described in detail
elsewhere [1].

The evolution of SLIDE and its protein and ligand
representations

Specitope was the precursor of SLIDE and focused
on peptide-protein docking [4]. The binding site was
represented as a steric shell of protein surface atoms,
plus a few points (typically, six or fewer) where atoms
from the peptide (which could represent the binding
epitope of a larger protein) could be placed and make
good hydrogen-bond interactions with the protein. The
peptide structural database used for screening was a
set of ∼155,000 successive, overlapping peptides from
a non-redundant (<25% identity) version of the Pro-
tein Data Bank (PDB) [5]. To be docked by Specitope,
a peptide needed to match at least a subset I of the
J template points. Usually peptides 3–5 residues in
length were screened, and a subset of their interaction
points was required to match all points of the 4 or 5-
point protein template in order to dock the peptide.
The placement of these template points was typically
based on known ligand interactions, and therefore rep-

resented a pharmacophore model of desired ligand
features for binding to the protein.

While hydrogen-bond interactions were empha-
sized initially because they provide orientational
specificity to the protein-ligand interaction, the role of
hydrophobic contacts in the enthalpy of binding was
also recognized and implemented in the first version
of SLIDE. SLIDE [1–3] can screen and dock organic
small molecules (including peptides) using either a
pharmacophore model, specifying a few points of in-
teraction, or an unbiased representation of the entire
ligand-binding site. For the unbiased representation,
the binding site is filled with a large number of points
(20,000–60,000). From each point, the type of pro-
tein interaction that can be made is then determined,
and the points are labeled accordingly as hydropho-
bic, hydrogen-bond donor, acceptor, or donor/acceptor
(donor and acceptor, due to either interacting with a
donor and acceptor group in the protein, e.g., hydroxyl
group, or being able to interact with separate acceptor
and donor groups). Points at which a ligand cannot
make significant hydrophobic or hydrogen-bond inter-
actions are discarded from the set, while those with
similar chemistry labels are clustered in 3D to re-
duce the number of template points to a manageable
number of 100–150 points. Each ligand candidate is
similarly represented as a set of hydrogen-bond donor
or acceptor atoms and hydrophobic centers (defined
in the initial version of SLIDE as the centroids of
rings containing only carbon and hydrogen atoms).
SLIDE can then test each ligand candidate for dock-
ing to the protein, by assessing whether one of its
triplets of interaction points matches one or more
of the triplets of protein template points in terms of
donor/acceptor/hydrophobic labels and triangle shape.
All ligand and template triplets are exhaustively tested
for matching, and every such match that leads to
a docking orientation that is evaluated by scoring.
Protein-bound water molecules can also be included
in SLIDE docking, and are retained or displaced ac-
cording to their probability of being conserved upon
ligand binding (as determined, for example, by us-
ing the Consolv software [6]). These interfacial water
molecules contribute to the hydrogen-bond score be-
tween the docked ligand and protein, with the second
term in the scoring function measuring hydrophobic
complementarity between the two molecules [1].

The ∼100-point unbiased template of the ligand
binding site using hydrogen-bonding and hydrophobic
interaction points has allowed SLIDE to work well
on a number of protein systems [1–4, Schnecke and
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Figure 1. An overview of the SLIDE screening and docking algorithm. See Schnecke & Kuhn [1] for more details.

Kuhn, Proteins, in review]. However, it was found that
when a known ligand failed to dock using SLIDE 1.0,
it was typically because the matching between triplets
of protein template points and ligand interaction points
was not close enough. This was due to a combination
of slight shifting of hydrogen-bonding points relative
to positions where they could match the ligand, and
to incomplete sampling of hydrophobic surface in the
protein. Simply increasing the tolerance of matching
led to much longer run times, due to finding many
more (not necessarily better) dockings. In the SLIDE
paradigm, protein and ligand flexibility are equally
balanced, and the molecules flex as little as needed in

order to form a complex free of van der Waals over-
laps. This assumption of minimal side-chain motion
upon complex formation appears to be true for many
proteins, and is being directly addressed in ongoing
work.

Improving the success rate of docking known lig-
ands to a protein structure that does not already have
correct side-chain conformations for that ligand (e.g.,
an ‘apo’ structure of the protein, solved in the ligand-
free state) was the motivation for the present work,
which is aimed at defining protein templates that
capture optimal points for interacting with the pro-
tein. Knowledge bases of hydrogen-bonding geometry
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around protein groups [7, 8] allow us to focus now
on optimal (rather than just feasible) positions for
hydrogen bonding. Significantly hydrophobic posi-
tions at the protein surface can also be distinguished
from the background level of solvent-exposed carbon
atoms, based on the local enhancement of hydropho-
bic atoms. Similarly, the interaction points on ligand
candidates can be sampled to have similar density and
chemistry to the hydrophobic and hydrogen-bonding
assignments in the protein template. While this work
has been driven by the aim to improve the modeling
of protein recognition through docking in SLIDE, this
representation of key interacting groups in proteins
and ligand candidates is also expected to be useful
for other docking methods, and to provide a focus on
optimal interactions to make in structure-based protein
and ligand design.

Other approaches for discrete representation of
protein binding sites

Reduced representations of protein binding sites have
been developed by other groups for use in modeling
protein recognition. Typically, the protein’s binding
site is discretized to a set of 100 or fewer interaction
points to enable fast comparison between the protein
and each ligand. Many of these methods use reduced
representations to aid in matching the protein and lig-
and surfaces. The initial, computationally complex
search of the 6 degrees of rotational and translational
freedom of the ligand relative to the protein is reduced
to a problem of matching a set of N points on the
ligand to the best-matching subset of N points from
M points on the protein. N and M typically must be
small due to the factorial complexity of the number of
ways of matching N points to a larger set of M points.
In the case of SLIDE, 3-point subsets of N interaction
points on the ligand are tested for matching to all 3-
point subsets of a set of typically 100–150 template
points representing the protein.

In the case of DOCK [9], the earliest protein-
ligand docking technique, the binding site is filled with
spheres, whose centers serve as possible ligand atom
positions. Chemical properties or other characteris-
tics can be associated with the spheres, and a sphere
with a particular characteristic can only be matched
with a ligand atom of complementary character [10].
Jones et al. [11] identify solvent-accessible hydrogen-
bond donor and acceptor atoms within the active site
of the protein and associate virtual points with each
hydrogen and lone pair of these atoms, enabling the

genetic algorithm employed by GOLD [12] to trans-
form the ligand into the binding site by minimizing the
least-square distance between protein virtual points
and similarly defined ligand virtual points. Ruppert
et al. [13] coat the protein’s binding site surface
with probes of three types, hydrophobic, acceptor and
donor, which could potentially interact with the pro-
tein. These probes can serve as potential alignment
points for ligand atoms and are scored to represent the
probe’s affinity for the protein. High affinity probe-
clusters identify sticky spots, or regions of strongest
potential binding. This method can also be used to find
binding pockets on the surface of a protein. FlexX [14]
uses a multi-layered representation of the binding site
adopted from its predecessor LUDI [47]: interaction
types are arranged on three levels depending on their
directionality, with H-bonds being the most directional
at level three and hydrophobic interactions the least
directional at level one. Each group capable of form-
ing an interaction is characterized by an interaction
center and a surface, the latter being approximated by
a finite number of points. Ligand interaction centers
are superimposed over these points and aligned, giv-
ing preference to higher-level interaction points over
lower-level ones. In an approach related to that of
SLIDE, Fischer et al. [48, 49] describe the surfaces
of the protein and ligand by a set of critical points and
their normals, then apply geometric indexing to dock
the ligands into the protein by matching the critical
points and vectors.

Grid-based representations are also used to map
favorable points of interaction with proteins. In prepa-
ration for docking with AutoDock [15], the protein
binding site is placed in a grid. The protein-ligand
pair-wise interaction energies are precalculated at each
grid point for each possible ligand atom type and are
stored in a look-up table for use during the docking
simulation. The Grid technique developed by Boob-
byer et al. [16] calculates for each grid point an
empirical energy designed to represent the interaction
energy of a chemical probe group, such as a carbonyl
oxygen or an amine nitrogen atom, around the target
molecule. This function is used to determine the sites
where ligands may bind to the target, such as a protein.

Finally, knowledge bases of the frequency of pair-
wise atomic or functional group interactions deduced
from the crystallographic protein structures in the
PDB [17] and small organic molecule structures in
the Cambridge Structural Database (CSD) [18] can be
used to map favorable sites for ligand interactions with
proteins. Relibase [19], a database system of protein-
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ligand interactions from the PDB, has been used to de-
rive atomic potentials between protein and ligand atom
groups for use in DrugScore [20]. DrugScore can then
calculate ‘hotspots’ for interactions with different lig-
and atom types, which are displayed as contour maps
within the binding site [21]. Similarly, the SuperStar
software [22], based on pair-wise interaction frequen-
cies in the CSD database, can calculate hotspots for the
binding of 16 probe atom types to proteins. A recent
paper analyzes how the interaction maps developed
from PDB versus CSD data complement each other
[23]. Another knowledge-based approach was taken
by Moreno and Leon [24] to describe the binding site
for DOCK: templates of attached points or contact
points are constructed for each amino acid type, rep-
resenting the geometry of the interactions observed in
the different protein-ligand complexes from the PDB.

In this paper, we show how a knowledge-based
approach for describing favorable interaction sites on
proteins and ligands can improve the performance
of SLIDE when a database of known ligands com-
bined with a random selection of CSD compounds
is screened against two protein targets, thrombin and
glutathione S-transferase.

Methods

Template generation to represent binding sites in
proteins

Two methods to generate a template for the binding
site of interest were initially implemented in SLIDE:
small, biased, pharmacophore-like templates, and un-
biased, grid-based approaches. The biased template
is based on known ligand binding modes and con-
sists of coordinates of ligand atoms making hydrogen
bonds or engaging in hydrophobic interactions with
the protein of interest, as seen in crystal structures
of protein-ligand complexes. This pharmacophore-like
representation of binding determinants is biased to-
wards known ligands, and is especially appropriate
when the aim is to identify other molecules that make
similar interactions. When the goal instead is to iden-
tify new classes of ligands or help define the ligand
specificity for protein structures with unknown func-
tions, an unbiased, thorough representation of the
potential ligand-binding site is preferable. Therefore,
SLIDE also has an option to automatically generate
an unbiased template based on a ligand-free structure
of the protein. To generate an unbiased template in

version 1 of SLIDE, the binding site was filled with
a large number of points, initially located on a fine
grid with a spacing of 0.3–0.7 Å (Figure 2A; ref. [1]
and Schnecke & Kuhn (2002) Proteins, in review). Ini-
tial experiments with random placement of the points
showed significant under-representation of some areas
in the binding site, so the grid-based approach was
adopted instead. Only points located 2.5 to 5.0 Å from
the nearest protein atom were kept. Each point was
then checked to determine if it could serve as a hy-
drogen bond donor, acceptor, or form a hydrophobic
interaction with the protein, and was either labeled
as such, or eliminated from the set. All points of the
same class were then clustered using complete linkage
clustering to reduce the number of template points to
150 or fewer.

Because grid placement of hydrophobic and
hydrogen-bond points is not always optimal with re-
spect to protein interactions, here we describe the
development of a knowledge-based approach to plac-
ing points in an unbiased template. Geometrically
favored subsites for ligand hydrogen-bonding atoms
are assigned based on the distance and angle to pro-
tein hydrogen-bonding partners (Figure 2B). After
identifying the protein atoms capable of hydrogen
bonding, a number of template points are placed at
and around the optimal hydrogen bonding position
for each of these atoms, using the geometries shown
in Figure 3. The template points belonging to one
hydrogen-bonding protein atom are separated by ∼1 Å
and are placed at a distance of 2.9 Å (for Asp, Glu,
Lys, Thr and Tyr side chains) or at 3.0 Å (for all the
other side chains and backbone oxygen and nitrogen)
from the protein donor or acceptor atom. The para-
meters for optimal hydrogen bonding geometry were
taken from the literature [7, 8]. The points are labeled
as donors, acceptors or donor/acceptors, depending on
the role an atom at this position would have in hydro-
gen bonding to the protein. A donor template point,
for example, is located near an acceptor protein atom,
such as a backbone carbonyl oxygen, and represents a
favorable placement for a ligand atom acting as an H-
bond donor. A donor/acceptor point is defined in two
cases: when a ligand atom at that point could make fa-
vorable hydrogen bonds with separate hydrogen-bond
donor and acceptor atoms in the protein, or when it
could interact with a group that both donates and ac-
cepts hydrogen bonds (e.g., –OH in the side chains
of Ser, Thr, or Tyr). Template points that overlap with
those belonging to neighboring atoms (template points
separated by <1 Å) are clustered and relabeled, and



888

Figure 2. Comparing the (A) grid-based and (B) knowledge-based template generation methods. Template points are generated on a grid in
version 1 of SLIDE. The method implemented in SLIDE, version 2 uses a knowledge base to define points where optimal protein–ligand
interactions can be made, based on points where the ligand could make optimal hydrogen bonds and hydrophobic interactions with the protein.
Template points are colored according to their type: green for hydrophobic, red for acceptor, blue for donor, and purple for donor and/or
acceptor points.

points closer than 2.5 Å to a protein atom are dis-
carded. The clustering of hydrogen-bonding template
points reduces the number of points by about 10–25%.
Points generated by the clustering of a donor and an
acceptor point are relabeled as donor/acceptors.

Hydrophobic template points are generated using
a grid for initial point placement, as before, but the
criteria have been updated for which of these points
should be included to represent favorable sites for lig-
and interactions. Hydrophobic points are those grid
points with a hydrophobic enhancement score of at
least 3. This score is defined as the number of carbon
atoms minus the number of hydrophilic atoms, such as
oxygen or nitrogen, within a spherical shell of radius
2.5–5.0 Å from the template point in question. The
cutoff value of 3 was found to define the significantly
hydrophobic protein surface patches that complement
the hydrophobic groups in ligands for a number of 3D
protein-ligand complexes.

After they are generated separately, the H-bonding
and hydrophobic template points are merged into one
template that can be used for docking with SLIDE. If
the total number of template points is much larger than
150 (a practical upper limit given the combinatorics
of matching ligand interaction points with template
points), then the complete linkage clustering feature
can be used to reduce neighboring points of the same
class to a single point, the cluster centroid. Complete
linkage clustering has the desirable features that the
clusters can be defined to not exceed a certain diame-

ter (helping control the separation between centroids),
and they are guaranteed to be the most densely occu-
pied set of clusters for that diameter [25]. Typically
we use a clustering threshold of 4 Å, resulting in hy-
drophobic template points separated by about 2 Å.
When a clustering threshold of x Å is used with com-
plete linkage clustering (where x is typically chosen
between 2 and 4 Å), the average distance between the
final template points (the centroids of each cluster) is
very close to x/2. For any uniformly distributed set of
points clustered by complete linkage, the centroids of
the clusters will be separated by half the cluster diam-
eter (called the clustering threshold in this work), on
average.

Ligand interaction points

Hydrophobic ligand interaction points are assigned us-
ing a rule-based approach summarized in Figure 4.
These rules are designed to place an interaction point
at approximately every 1.5 hydrophobic carbon atoms
in hydrophobic chains and around the circumference
of hydrophobic rings. This density of hydrophobic
interaction points is commensurate with the spacing
of hydrophobic points in the protein template, using
the default clustering criteria. For this approach, car-
bon and sulfur atoms bonded only to carbon, sulfur
or hydrogen atoms are considered to be hydropho-
bic. Other atoms are taken as hydrophilic. Hydrogen
bonding interaction points in the ligand are identified
as atoms capable of accepting or donating hydrogen
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Figure 3. (A) Placement of optimal hydrogen-bonding template points in SLIDE. For each polar side chain, the optimal placement of hydro-
gen-bond donor (D), acceptor (A) and donor and/or acceptor (N) template points is shown with respect to the donor and acceptor atom positions
in the side chain. These template points represent positions where a ligand atom matching the template point can form a hydrogen bond with the
protein. A ligand atom matching a donor/acceptor (N) template point must be either a donor or acceptor, or both. These optimal distances and
angles are consensus values describing preferred geometries [7, 8] observed in high resolution protein structures from the PDB. The positions
of hydrogen atoms in the protein are not assumed in template point placement, since these positions are not available in most crystal structures.
Instead, the most favorable positions for hydrogen-bonding partners is measured relative to the geometry of the covalent bonds in the side chains
(e.g., trans and gauche positions for Lys), as found from analysis of crystallographic data [7, 8]. (B) Three-dimensional example of template
point placement relative to a Lys side chain. The template points defined for minimal, sparse, and dense templates are shown, along with the
most-preferred distance and angle for hydrogen bonding, as shown above. The default template specification in SLIDE is dense, and thus there
are more possible H-bond template point matches, each of which is shifted by a small amount relative to the optimal position and still allows
formation of a near-optimal hydrogen bond between the matched ligand atom and the protein. Sparse and minimal hydrogen-bond templates
are alternatives that can be used to decrease the number of hydrogen-bond template points when the complete template for a protein, including
hydrophobic points, exceeds the practical limit of about 150 points.
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Figure 4. Summary of rules for hydrophobic interaction point assignment. The goal is to place a point at approximately every 1.5 carbon atoms,
which is commensurate with the default spacing of hydrophobic points in the template. Hydrophobic interaction points are denoted by green
spheres, carbon atoms by gray tubes, and nitrogen atoms, representing hydrophilic atoms, by blue tubes.

bonds, based on the SYBYL atom types in the mol2
file (described at http://www.tripos.com).

Ligand databases

A combined database of known ligands from the PDB
and a subset of 14,691 randomly selected CSD com-
pounds was assembled for alpha-thrombin and π-class
human GST. The CSD database was prescreened to
exclude molecules with excessive molecular weight as
well as those containing unusual atoms. The nonre-
dundant subset of known ligands for thrombin con-
tained 42 molecules taken from thrombin–ligand com-
plexes available from the PDB. To screen for ligands
to GST, 15 known ligands with PDB crystal structures
in complex with human GST were selected. For both
thrombin and GST, ligands from crystal structures

with a resolution of 3.0 Å or better were included in
the known ligand test set. If a ligand was found in mul-
tiple structures, the one with the highest resolution was
chosen. To ensure that SLIDE can appropriately model
the side-chain conformational changes necessary in
nature when proteins bind their ligands, structures
of thrombin and π-GST determined crystallograph-
ically with ligand-free active sites (apo structures)
were used as the targets for screening and docking
(PDB code 1vr1 for thrombin [26] and PDB code
16gs for GST [27]). This also avoided the docking
bias that is implicit in redocking experiments (when
the ligand-bound structure of the protein, already con-
formationally biased for that ligand, is used as the
basis for docking). Because interactions in a mutant
protein structure might change the favored orientation
of a ligand relative to its orientation in the wild-type
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protein (and therefore not allow fair comparison of
the docking with the crystallographic complex), lig-
ands from complexes containing a mutant version of
π-GST were excluded from the analysis. Four of
the GST crystal complexes (PDB codes 13gs, 20gs,
21gs and 2gss [28, 29]) contained two ligands: glu-
tathione, and a smaller hydrophobic ligand bound to
the xenobiotic subsite of the active site. Only the hy-
drophobic ligands from these structures were included
in the screening dataset, and glutathione from the
GST-glutathione complex 1aqw [30] was used as the
single representation of this ligand in the screening set.

In order to focus the large number of orientations
that can result from the screening/docking process on
productive binding modes, selected template points
can be labeled as key points. Template points from
parts of the binding site known to be critical for tight
and/or specific binding can be marked as key points,
and any docking must then include a match to one (not
all) of these points. This ensures that docked mole-
cules will at least partially occupy the targeted site.
For thrombin, points in the specificity pocket within
5.0 Å of the carboxyl oxygens of Asp 189 were se-
lected as key points. Assignment of key points in the
GST binding site was more challenging, as it is made
up of two subsites, one for hydrophobic ligands and
the other for glutathione, which is fairly polar. SLIDE
was run twice on the known ligands in the case of
GST: initially with key hydrogen bonding points in a
5.0 Å radius sphere around the side chain hydroxyl
oxygen of Ser 65 in the deepest pocket of the glu-
tathione binding site, to capture ligands that can bind
to this polar site, then with key hydrophobic points
in the area between Tyr 108 and Phe 8, the xenobiotic
(hydrophobic)binding site. Screening against the CSD
ligands was done using the first set of key points in
the glutathione-binding pocket, which includes both
hydrophobic and hydrogen-bonding interactions.

Using key points is mainly a convenient way to en-
sure that ligands make interactions in the deep pockets
of the binding site, rather than making less favor-
able, superficial interactions. Placing key points in the
deepest pocket of the thrombin active site would be
useful, in the absence of any knowledge of thrombin
ligand structure or chemistry, to ensure the absence
of a significant, destabilizing cavity in the complex.
Ensuring that deep pockets are filled is also a widely
used approach in structure-based drug design to in-
crease ligand binding affinity and specificity. For GST,
the use of key points allows a convenient analysis of
ligand binding to the hydrophobic binding site ver-

sus binding to the glutathione site, without specifying
which ligands favor which site, or how they bind.
We can therefore assess the accuracy of ligand speci-
ficity as well as docking for GST: hydrophobic ligands
should fit and score well in the hydrophobic site, and
score poorly if they also dock into the polar site (when
key points are included there, instead), and vice versa
for the polar ligands. This allows a more sophisticated
analysis for GST, making use of both its binding sites.
Key points can also hurt docking results, because not
all ligands may make one of the chosen interactions
and therefore would either not be docked at all, or
would be forced to dock by making a non-native in-
teraction. Thus, using key points is only recommended
for predicting the docking of ligands if there is a strong
indication as to the location of a key binding pocket
within the larger binding site (as is obvious in the case
of thrombin, which has a funnel-shaped active site).
Another appropriate occasion for including key points
is in design applications, when the intent is to con-
trol which pocket or binding site is to be probed by a
database of ligand candidates or fragments.

Evaluation of these protein and ligand
representations in ligand screening and docking

Templates for thrombin and GST were created both
with the grid-based and the knowledge-based template
generation methods; the knowledge-based templates
are shown in Figure 5A,B. Sets of interaction points
for the known ligands and the CSD compounds were
also identified using both assignment methods. SLIDE
was used to screen the known ligands and the CSD
compounds against thrombin and GST, first using the
grid-based template and the original ligand interac-
tion points, and in a second experiment using the
knowledge-based template and the new ligand inter-
action points. The two methods for representing the
protein target and ligand candidates were evaluated in
two ways. First, they were evaluated based on how
well SLIDE, using these protein and ligand represen-
tations, could reproduce the known ligand positions
in the structure of the protein-ligand complex. This
involved docking the ligands into an apo structure of
the protein, with side-chain positions not already op-
timized for the ligands. Secondly, they were evaluated
by how well known ligands and nonspecific molecules
(in our case, CSD compounds) could be differen-
tiated. The heavy atom root-mean-square-deviation
(RMSD) was used to compare the docked ligand ori-
entation with its crystal structure position. Because
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scoring remains a major challenge in the field [31–
33], and to ensure that the results were not very
dependent on the particulars of the scoring function,
the dockings were also evaluated using DrugScore as
well as the SLIDE score. While SLIDE scores the
protein-ligand complex based on the number of hydro-
gen bonds and the hydrophobic complementarity [1],
DrugScore [20] calculates protein-ligand interaction
energies employing a knowledge-based potential that
reflects the frequency of pair-wise atomic distances
observed in protein-ligand complexes from the PDB.
The known ligands and CSD compounds were each
docked, scored, and sorted by score. Then, the en-
richment in selecting known ligands from the random
database, based on scores, was calculated as the per-
centage of known ligands captured as a function of
the percentage of the database screened, where the
top 1% of the database represented the top scoring
compounds.

Results

All four combinations of template and ligand interac-
tion point design were evaluated: grid-based template
with original interaction points, grid-based template
with new interaction points, knowledge-based tem-
plate with original interaction points, and knowledge-
based template with new interaction points. Both the
knowledge-based template design and the new inter-
action point assignments resulted in improvements
individually, but the most improvement was seen upon
combining the two. For brevity, we present only the

Figure 5. New knowledge-based template and the corresponding
improvement in docking quality. The Connolly solvent-accessible
molecular surfaces [45] of the GST (A) and thrombin (B) active sites
are shown, color–coded according to atom type (green – carbon,
blue – nitrogen, red – oxygen, yellow – sulfur). Known ligands from
PDB structures 2pgt (A) and 1a5g (B) were docked into the binding
site with SLIDE and are shown as tubes, also colored according to
atom type. The template points are represented as spheres, with blue
representing hydrogen-bond donor points, red for acceptors, white
for donor/acceptors, and green for hydrophobic interaction points.
(C) Comparing the docked orientations to the crystal structure posi-
tion of a β-strand mimetic inhibitor (PDB code 1a46) in the binding
site of thrombin. The crystal structure position of the ligand is shown
in white, and the docked orientation using the knowledge-based
method is in magenta (RMSD 1.03 Å), while the docking obtained
with the grid-based method is shown in blue (RMSD 2.48 Å). This
is representative of the improvement in docking quality observed
for the thrombin and GST ligands in general. The view into the
thrombin active site is slightly shifted relative to that in the previous
panel.
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results obtained with the two most relevant combina-
tions: grid-based protein template with original ligand
interaction point assignments (subsequently referred
to as method 1, and corresponding to the implemen-
tation in SLIDE v. 1), and knowledge-based tem-
plate with new interaction points (method 2, as now
implemented in SLIDE v. 2).

Thrombin

The 42 known thrombin ligands used in this study
are listed in Table 1, along with the PDB code of the
crystallographic complexes from which they were ob-
tained. SLIDE docked 36 ligands into the binding site
of thrombin using both methods. The ligands with no
scores listed could not be docked, due to unresolved
steric overlaps with the apo-active site thrombin struc-
ture (1vr1) except for the case of benzamidine (PDB
code 1dwb), which was not docked, due to the un-
usual proximity of its three interaction points (the two
amide N’s, and any pair of its three benzene-ring hy-
drophobic points, were all <2.5 Å apart). This caused
benzamidine dockings to not meet a default parame-
ter setting in SLIDE which ensures that the minimum
edge of any triangle being matched is >2.5 Å. This
is intended to ensure that ligand dockings are comple-
mentary to more than a very local region of the binding
site. (If the binding site is small, or the goal is to find
small molecules that match very locally, this parame-
ter can be changed easily.) Among the docked ligands,
27 had a heavy atom RMSD smaller than 2.0 Å com-
pared to the crystal structure orientation using method
1, while 33 such dockings were obtained with method
2. As shown in Figure 6A, the dockings were generally
closer to the crystal structure position using method 2,
as reflected by their lower RMSD values. The mean
RMSD for thrombin ligand dockings was 1.83 Å using
method 1, and 1.28 Å using method 2. An example of
the typical improvement in the quality of docking for
thrombin ligands is shown in Figure 5C.

Enrichment plots of the percentage of known lig-
ands docked as a function of the percentage of the
database screened (CSD plus thrombin ligands) are
shown for SLIDE scores (Figure 7) and DrugScores
(Figure 8). Higher enrichment is gained with method
2 compared to method 1, independently of the scoring
function used (indicated by a shift to the left of the
new curve compared to the original one in panel A in
Figures 7 and 8). This means that more known ligands
are returned by SLIDE among the top scoring CSD
compounds. Based on the SLIDE score, for exam-

ple, the percentage of the known ligands that ranked
among the top scoring 100 molecules increased from
38% (16 out of 42) to 64% (27 out of 42). The results
are very similar when using DrugScores: 67% of the
known molecules (28 of the 42) ranked among the top
scoring 100 molecules with method 2, compared to
33% (14 of the 42) using method 1.

The score distributions also show that the
knowledge-based protein and ligand representations
provide a better separation between known ligands and
randomly chosen CSD compounds for both the SLIDE
scores (Figure 7BC) and DrugScores (Figure 8BC).
The difference between the mean SLIDE scores of the
known ligands and CSD compounds increased from
20.7 score units to 27.1 score units when method 1
was replaced by method 2. DrugScore also mirrors
a better discrimination between known ligands and
CSD compounds when the knowledge-based method
is used.

Glutathione S-transferase

SLIDE was able to find a collision-free orientation for
14 of the 15 known ligands in the active site of GST
with method 2, while 13 were docked using method 1
(Table 2). The ligand from the crystal complex 19gs
could not be docked for the same reason described for
benzamidine in the previous section, whereas the rea-
son for failure of chlorambucil (21gs) to dock was the
existence of unresolved steric clashes with the protein.
Method 2 resulted in better dockings (lower RMSD
values), as illustrated in Figure 6B by the majority
of points falling under the diagonal. Only one of the
14 docked ligands had a lower RMSD when method
1 was used, two were docked about equally well,
while 10 were docked closer to their crystal struc-
ture position with method 2. The number of known
ligands docked with an RMSD less than 2.0 Å dou-
bled from five to ten, and the mean RMSD between
crystal structure and docked positions decreased from
2.15 Å to 1.00 Å upon introducing the knowledge-
based method. The four hydrophobic ligands, shown
by the crystal complexes to bind to the hydrophobic
subsite of GST (13gs, 20gs, 21gs, 2gss), were docked
incorrectly (RMSD > 5.0 Å) when polar template
points were used as key points. This is not surpris-
ing given that these ligands must make interactions
in a region different from where the key points were
assigned. However, their docking improved substan-
tially when hydrophobic key points were used in the
second run with either method of template generation
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Table 1. Comparison of SLIDE scores, DrugScore scores and RMSDs of known thrombin ligands docked into the active site of thrombin
by SLIDE using the original template and ligand interaction point generation methods in comparison with the knowledge-based method.
The original DrugScore scores are divided by 104 to give a comparable order of magnitude to SLIDE scores. For both scores, a larger
absolute value means a better score, and ‘best’ corresponds to the docking with the highest score or lowest RMSD (columns 5–8 and
9–10, respectively).

PDB Ligand name DrugScore SLIDE Best SLIDE score Best DrugScore ×10−4 Best RMSD (Å)
code of ×10−4 score grid- knowledge- grid- knowledge- grid- knowledge-
thrombin-
ligand
complex

crystal str.
position

crystal str.
position

based based based based based based

1a2c Aeruginosin298-A −41.8 60.4 29.2 23.6 −37.4 −29.8 8.33 8.57
1a3b Borolog1 −56.5 49.8 50.5 55.0 −48.3 −56.0 1.22 0.30
1a3e Borolog2 −32.7 32.0 – – – – – –
1a46 Beta-strand mimetic inhibitor −62.0 57.3 43.3 61.2 −37.3 −52.2 2.49 1.03
1a4w Ans-Arg-2ep-Kth −48.0 71.5 59.8 61.1 −49.5 −50.5 1.39 0.52
1a5g Bic-Arg-Eoa −70.9 60.1 55.8 74.0 −65.5 −62.0 0.56 0.97
1a61 Mol-Arg-Lom −58.1 58.6 54.1 64.3 −38.1 −54.0 1.90 1.02
1ad8 MDL103752 −72.6 31.8 – – – – – –
1ae8 Eoc-D-Phe-Pro-Azalys-Onp −47.5 36.9 45.5 53.1 −44.6 −46.4 0.32 0.65
1afe Cbz-Pro-Azalys-Onp −38.5 21.8 35.4 40.5 −36.2 −33.6 1.26 1.05
1aht p-Amidino-phenyl-pyruvate −37.2 30.9 22.7 29.9 −31.6 −34.9 2.40 0.81
1ai8 PhCH2OCO-D-Dpa-Pro-

boroMpg
−55.1 44.0 – – – – – –

1aix PhCH2OCO-D-Dpa-Pro-
boroVal

−51.4 38.1 – – – – – –

1awf GR133487 −44.8 56.8 44.0 28.0 −43.0 −34.2 1.56 11.29
1awh GR133686 −44.5 37.0 47.5 – −46.4 – 0.90 –
1ay6 Hmf-Pro-Arg-Hho −57.2 72.1 55.1 66.8 −48.5 −54.4 1.01 0.71
1b5g Bcc-Arg-Thz −56.7 37.9 32.8 57.8 −30.1 −56.9 8.71 0.40
1ba8 Pms-Ron-Gly-Arg −51.5 58.5 51.6 57.5 −43.2 −46.4 0.98 0.51
1bb0 Pms-Ron-Gly-3ga −50.7 54.8 51.2 66.8 −44.7 −50.5 1.14 0.65
1bcu Proflavin −30.8 24.0 21.9 25.7 −30.5 −27.0 3.90 2.16
1bhx SDZ 229-357 −47.2 49.3 44.2 55.6 −43.4 −51.2 0.75 0.53
1bmm BMS-186282 −50.3 53.9 47.8 57.5 −41.2 −52.6 0.71 0.38
1bmn BMS-189090 −55.5 45.7 38.4 43.5 −48.5 −55.9 0.83 0.29
1dwb Benzamidine −26.7 15.9 – – – – – –
1dwc MD-805 (Argatroban) −42.6 52.8 57.3 45.2 −43.3 −43.3 0.56 1.04
1dwd NAPAP −60.5 46.9 43.5 52.7 −52.5 −64.3 0.97 0.44
1fpc Ans-Arg-Epi (DAPA) −40.4 46.9 57.0 53.2 −40.3 −39.0 0.94 0.90
1hdt Alg-Phe-Alo-Phe-CH3 (BMS-

183507)
−53.8 53.0 67.1 61.3 −55.2 −53.6 0.43 0.65

1lhc Ac-D-Phe-Pro-boroArg-OH −57.3 52.8 37.2 46.2 −45.2 −52.8 1.18 0.67
1lhd Ac-D-Phe-Pro-boroLys-OH −51.1 41.3 32.7 48.5 −35.8 −46.9 1.29 0.77
1lhe Ac-D-Phe-Pro-boro-N-butyl-

amidino-Glycine-OH
−59.9 54.2 51.3 55.1 −49.6 −56.3 1.05 0.71

1lhg Ac-D-Phe-Pro-
borohomoornithine-OH

−46.8 42.8 – 37.3 – −35.2 – 1.32

1nrs Leu-Asp-Pro-Arg −51.9 52.8 43.5 57.7 −34.6 −46.6 1.49 0.75
1ppb PPACK −50.9 43.8 46.2 44.4 −32.5 −50.7 1.73 0.71
1tbz Dpn-Pro-Arg-Bot −62.8 40.2 41.8 66.5 −35.8 −51.4 4.11 1.10
1tmb Cyclotheonamide A −68.4 72.3 54.2 57.9 −38.9 −60.4 2.61 1.00
1tmt Phe-Pro-Arg −54.7 47.6 48.9 51.4 −36.1 −49.7 2.18 0.54
1tom Methyl-Phe-Pro-amino-

cyclohexylglycine
−49.2 36.1 43.1 45.5 −39.1 −44.9 1.01 0.74

1uma N,N-dimethylcarbamoyl-
alpha-azalysine

−18.9 20.7 12.9 23.0 −15.1 −22.0 2.80 0.94

3hat Fibrinopeptide A mimic −51.0 50.4 46.5 39.2 −29.0 −46.7 1.62 0.89
7kme SEL2711 −60.4 49.1 52.4 60.7 −63.2 −65.1 0.54 0.40
8kme SEL2770 −59.0 59.2 47.1 58.6 −54.8 −61.5 1.06 0.79
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Figure 6. Comparing the RMS deviations between the docked orientations of known ligands and their crystal structure positions resulting from
the original and the knowledge-based methods of template and ligand interaction point generation in the case of thrombin (A) and GST (B).
Ligands docked better (with lower RMSD) with the knowledge-based method are represented by points below the diagonal line. The significant
outlier in (A) with RMSD ∼11.3 Å is a ligand with a neutral side chain occupying the S1 specificity pocket of thrombin in the x-ray structure
of the protein-ligand complex (PDB code 1awf [46]). This is a case in which the inclusion of key points can lead to misdocking. The atypical
lack of hydrogen-bonding atoms in the portion of the 1awf ligand that binds to the S1 specificity pocket led to the inability of SLIDE to match
this part of the molecule to at least one key point in the S1 pocket. The ligand was thus rotated by SLIDE about 180◦ compared to its crystal
structure position, in order to satisfy the key point matching requirement by placing another, polar side chain into the S1 pocket.

and interaction point assignment. Hydrophobic tem-
plate points can be used as key points for docking
smaller sets of ligands to a protein, but this is not a
practical alternative when screening large databases.
Since matching three template points is sufficient for
docking with SLIDE, using hydrophobic key points
when screening a large database can result in docking
a very large number of small, relatively nonspecific,
hydrophobic molecules. They could later be elimi-
nated based on their scores, of course, but this would
still result in a considerable increase of the running
time and output volume.

Only the results of the first run (with hydrogen
bonding key points) were used to construct the en-
richment plots for GST (Figure 9A). For brevity, only
the enrichment plot for DrugScores is shown; the re-
sults were substantially similar using SLIDE scores.
DrugScores indicate that more of the known ligands
were retrieved among the top scoring molecules (Fig-
ure 9A), meaning improved enrichment was achieved
with method 2 compared to method 1 for GST. When
the SLIDE scoring function was used, 73% of the
known ligands (11 out of 15) were ranked among the
top scoring 100 of all docked molecules when using
method 2, compared to 60% (9 out of 15) among
the top 100 with method 1. Using DrugScore, the
percentage of the known ligands ranking among the

top scoring 100 of all the docked molecules increased
from 33% (5 out of 15) to 60% (9 out of 15).

The distribution of scores obtained for the docked
known ligands and CSD compounds to GST are shown
in Figures 9B and C. The difference between the mean
scores of the GST ligands and randomly selected GST
molecules increased due to the introduction of the
knowledge-based method, independently of the scor-
ing function applied: the means were separated by an
additional 7.5 score units using SLIDE scores, and by
an additional 9.4 × 104 units using DrugScore. Al-
though the standard deviations of the DrugScores and
SLIDE scores also increased, the increased separation
of the means was roughly three times greater than the
increase in standard deviations.

Discussion

Because the computation time increases nearly expo-
nentially with the size of the template, a compromise
must be reached such that the most important features
of the binding site are captured with the smallest pos-
sible number of template points. Using a knowledge-
based approach for identifying the most favorable
hydrogen-bonding subsites in the binding site of the
protein proved to be superior over grid-based sampling
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Table 2. Comparison of SLIDE scores, DrugScore scores and RMSD’s of known GST ligands docked into the active site of GST (PDB
code 16gs). SLIDE was used with the grid-based template and original ligand interaction point generation methods in comparison with the
knowledge-based method. The original DrugScore scores are divided by 104 to give a comparable order of magnitude to SLIDE scores. For
both scores, a larger absolute value means a better score, and ‘best’ corresponds to the docking with the highest score or lowest RMSD
(columns 5–8 and 9–10, respectively).

PDB Ligand name DrugScore SLIDE Best SLIDE score Best DrugScore ×10−4 Best RMSD (Å)

code of
GST-
ligand
com-
plex

×10−4

crystal str.
position

score
crystal str.
position

grid-
based

knowledge-
based

grid-
based

knowledge-
based

grid-
based

knowledge-
based

10gs Benzylcysteine
phenylglycine

−50.2 40.7 42.9 44.6 −23.3 −49.1 2.73 0.36

12gs S-nonyl-cysteine −49.7 46.8 40.5 52.2 −24.4 −44.9 2.77 0.36

13gs∗ Sulfasalazine −30.7 34.6 20.6
(38.4)

32.2
(50.9)

−12.4
(−27.3)

−21.7
(−27.7)

8.76
(2.02)

6.42
(1.78)

18gs 1-(S-glutathionyl)-2,4-
dinitrobenzene

−41.8 44.5 38.8 47.9 −35.9 −36.2 1.06 0.64

19gs Phenol-1,2,3,4-
tetrabromophthalein-
3′,3′′-disulfonic
acid ion

−12.6 17.7 – – – – – –

1aqv p-Bromobenzylglutathione −47.7 43.8 40.4 48.6 −18.2 −43.6 3.61 0.44

1aqw Glutathione −36.6 31.8 24.6 37.5 −28.0 −32.7 0.82 0.46

1aqx S-(2,3,6-
trinitrophenyl)cysteine

−46.5 37.4 37.5 42.4 −32.0 −49.6 1.44 0.78

1pgt S-hexylglutathione −46.1 49.2 33.1 46.4 −42.9 −38.3 0.46 0.53

20gs∗ Cibacron blue −22.2 21.7 19.5
(50.3)

44.0
(56.2)

−22.1
(−24.6)

−28.2
(−25.9)

5.51
(0.83)

5.48
(0.52)

21gs∗ Chlorambucil −22.0 25.4 –
(37.6)

12.1
(35.7)

–
(−19.6)

−18.5
(−23.0)

–
(4.22)

9.11
(4.21)

2gss∗ Ethacrynic acid −19.7 26.9 10.1
(30.7)

20.3
(36.1)

−14.6
(−24.6)

−18.5
(−19.1)

6.21
(1.43)

5.33
(2.25)

2pgt (9R,10R)-9-(S-
glutathionyl)-10-hydroxy-
9,10dihydrophenanthrene

−54.8 55.6 35.6 68.5 −28.9 −53.4 4.42 0.54

3gss Ethacrynic
acid-Glutathione conjugate

−52.3 75.0 58.3 71.4 −31.3 −47.7 1.22 0.52

3pgt Glutathione conjugate of
(+)-Anti-BPDE

−51.3 66.1 59.7 64.1 −36.0 −50.6 3.09 0.59

∗Ligands that are mainly hydrophobic in character and bind to the hydrophobic subsite of GST. The numbers in parentheses next to these
ligands are the scores and RMSD values obtained in a separate run, when hydrophobic template points from their respective binding subsite
were selected as key points. In the other screening runs for GST, hydrogen bonding template points were selected as key points. Each ligand
is required to match only one of the key points, allowing the screen to focus on ligands predicted to bind in the correct region within the active
site.

followed by the selective retention of points where
ligand atoms could act as hydrogen-bond donors or
acceptors. More known ligands could be docked closer
to their known crystal structure positions for both
thrombin and GST using the knowledge-based method
of template and ligand interaction point generation.

Docking experiments usually return multiple
docked orientations per ligand. Ideally, the scoring
function will indicate the one closest to the crystal

structure by giving it the highest score. Also, when a
large database is screened, the scoring function should
be able to discriminate between promising ligand can-
didates and artificial hits. Using the assumption that
most CSD compounds are unlikely to be ligands of
thrombin and of GST, the ability of SLIDE scores
and DrugScores to discriminate between known lig-
ands and CSD compounds was tested. The enrichment
plots calculated with both scoring methods showed
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Figure 7. Screening and enrichment improvements for thrombin us-
ing the knowledge-based template and new ligand interaction point
assignments, as reflected by SLIDE scores (A), where a shift to the
left of the curve corresponding to the new method indicates slightly
improved enrichment. The distributions of SLIDE scores obtained
with the grid-based method (B) and the knowledge-based method
(C) show that the knowledge-based method gives a better separation
between the scores of known thrombin ligands and random CSD
compounds, reflected by a greater separation between the means of
their score distributions. Curves that do not reach 100% for the ‘Per-
cent of known ligands retrieved’ reflect the fact that some ligands
were not docked.

Figure 8. Significant improvement in enrichment for thrombin
ligands, as reflected by the scoring function DrugScore (A),
where a leftwards shift of the curve corresponding to the knowl-
edge-based method indicates improved enrichment. The distrib-
utions of DrugScore scores (divided by 104) obtained using the
grid-based method (B) and the knowledge-based method (C) show
a much better separation between the scores of known thrombin
ligands and CSD compounds. This is reflected by a 10-unit increase
in separation between the mean DrugScore for ligands and the mean
DrugScore for random CSD compounds. Curves that do not reach
100% for the ‘Percent of known ligands retrieved’ indicate that some
ligands were not docked.
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Figure 9. Enrichment for glutathione S–transferase ligands, as re-
flected by the scoring function DrugScore (A), where the significant
leftwards shift of the curve corresponding to the knowledge-based
method indicates greater enrichment. The distributions of the scores
(divided by 104) obtained using the grid-based method (B) and
the knowledge-based method (C) again show a better separation
between the scores of known GST ligands and CSD compounds,
indicated by the large increase of 10 units between the means of
these two classes of compounds. Given the smaller sample size
(15) of GST ligands, this score distribution is less well defined than
those for thrombin (Figures 7 and 8). However, the same trends in
improvement are found for both proteins and both scoring functions.
Curves that do not reach 100% for the ‘Percent of known ligands re-
trieved’ indicate that some ligands were not docked. This percentage
decreased with use of the knowledge-based template.

improvement upon replacing the grid-based template
with the knowledge-based one, and the separation of
scores between ligands and CSD compounds also in-
creased. The reason for this is the ability of SLIDE to
dock ligands better with the knowledge-based method,
with better dockings receiving higher scores, whereas
the CSD compounds received roughly the same scores
using both methods.

Precise computational prediction of the binding
affinities of a series of ligands for an arbitrary protein
target cannot be routinely achieved by any method at
this time. Particular challenges remain in the handling
of interfacial solvation and protein and ligand flexibil-
ity, so scoring functions perform best when the details
of the protein-ligand complex are well-resolved. Thus,
docking presents a particularly hard case for scoring,
and consensus scoring by combining several scoring
functions has been suggested to enhance hit rates [31–
33]. To compensate for the shortcomings of using a
single scoring function, a second, independent scor-
ing function, DrugScore, was also used to score the
ligands docked by SLIDE. For thrombin and GST,
the two scoring functions showed similar results: in-
creased screening enrichment for known ligands, due
to better separation of the ligands from CSD com-
pounds. The correlation between the SLIDE scores
and the DrugScores of known ligands also increased
(Figure 10). This could be due to both scoring func-
tions being trained on correctly positioned ligands
from known protein–ligand complexes. They both per-
form quite well when the ligand is docked correctly,
but may show less consistent performance on slightly
misdocked molecules. In fact, our analysis on the
relationship between RMSD and score (unpublished
results) indicates that as a ligand is shifted from its
optimal position, the correlation between RMSD and
score is quickly lost. Once the ligand is slightly mis-
docked (say, due to a 1.5 Å shift from its optimal
position), its score may be indistinguishable from a
that of a poor docking due to misalignment of key
hydrogen bonds and hydrophobic interactions. Thus,
the score may not suggest that the docking is close
to being correct. This problem would be difficult to
solve by focusing on improving the scoring function,
since even a perfect scoring function would be quite
sensitive to a 1.5 Å shift between the interacting pro-
tein and ligand groups. However, this problem can
be addressed by improving the sampling of orienta-
tional space and the modeling of flexibility in docking.
Better sampling and flexibility modeling result in test-
ing more accurate dockings, increasing the probability
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Figure 10. Correlation between SLIDE scores and DrugScores of known thrombin ligands with the grid-based (A) and the knowledge-based
method (B). The negative DrugScore scores are shown with positive sign for ease of comparison, so that correlation rather than anticorrelation
between DrugScores and SLIDE scores is measured.

that the correct interactions between protein and lig-
and will be measured and result in high scores. The
SLIDE scoring function and flexibility modeling re-
mained the same in versions 1 and 2 (the ‘original’ and
‘new’ versions mentioned in Figures 6–9). Therefore,
the improvements in the sampling and representation
of protein and ligand chemistry alone account for the
significant improvements observed in the scores and
docking RMSD values with the new version of SLIDE
(see Figures 6–9).

The modeling of protein flexibility is also very im-
portant to accurate docking. Often, validation studies
test redocking, in which the ligand is removed from
the co-crystal structure, and the separated protein and
ligand structures are used to test the docking pro-
gram’s ability to identify the correct ligand binding
orientation in the protein. In that case, the protein is
guaranteed to be in the correct conformation for the
ligand. This simplifies the docking problem, such that
only orientational sampling for the ligand is needed.
It also assumes that the correct protein conformation
is known for that ligand, which is not true when pre-
dicting a protein-ligand complex or designing a new
ligand. Only 9 of the 42 thrombin ligands could be
docked into the apo structure without conformational
change in the protein or ligand (data not shown),
whereas with SLIDE flexibility modeling of the pro-
tein and ligand, 36 of 42 (86%) of the ligands could
be docked. For GST, 93% of ligands could be docked
with flexibility modeling, but only 60% without. Thus,
SLIDE models flexibility appropriately, allowing cor-

rect docking of the majority (∼90%) of thrombin and
GST ligands, as well as discriminating well between
ligands and non-ligands in screening. Without protein
flexibility modeling, for most ligands docking requires
using the pre-conformed protein structure for that lig-
and, or forcing unnatural, additional flexibility within
the ligand.

Both SLIDE score and DrugScore performed sig-
nificantly better using the knowledge-based protein
representation than with the original grid-based tem-
plate. Regularizing the sampling of hydrophobic inter-
action points on ligands (another change in version 2
of SLIDE, relative to version 1) also resulted in dock-
ing and scoring improvements. One explanation for
the observed improvements in scoring could be that
neither scoring method was optimized to work with
a grid-based template, in which the distances mea-
sured between interacting atoms could be non-optimal
due to rounding off to the nearest grid point. How-
ever, this brings up the important point that the protein
template and ligand interaction points in SLIDE are
used only for the initial docking of the ligand, whereas
scoring by either method is done using the full-atom
representation of the ligand docked to the protein, af-
ter flexibility modeling (and without reference to the
template or interaction points). Thus, improving the
quality of the initial docking, through improving the
representation of the protein and ligand, is what results
in the significant improvements in docking accuracy
and scoring observed here. These improvements are
apparently independent of the scoring function used
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(DrugScore and SLIDE score were developed using
different paradigms, as discussed below) or on the par-
ticulars of the protein and its ligands (thrombin and
GST are structurally and chemically quite different).

We have no definitive explanation for why SLIDE
score and DrugScore results are apparently so corre-
lated for the thrombin ligands (R = 0.80; Figure 10B).
DrugScore is derived from the extent to which a given
protein-ligand complex shows favored distances be-
tween the protein and ligand atoms. Favorability is
gauged from pair-wise atomic distance distributions
derived from a large set of protein-ligand complexes
from the Protein Data Bank. The SLIDE scoring func-
tion is a weighted sum of two terms. The first mea-
sures hydrophobic complementarity, calculated as the
complementarity in atomic hydrophobicity values of
atoms in the ligand with protein atoms that are within
a certain radius. This radius was chosen to include
the first shell of protein atoms within van der Waals
contact of the ligand atom. The atomic hydrophobic-
ity values came from a prior study of the tendency
of protein surface atoms to bind water molecules in
crystallographic structures [50]. The second term in
the SLIDE scoring function, counting intermolecular
hydrogen bonds, is based on others’ studies of the fa-
vored geometries of hydrogen bonds involving protein
atoms. Despite counting interactions somewhat differ-
ently, SLIDE score and DrugScore are both based on
knowledge derived from the geometry of interactions
within protein crystallographic structures. This may be
the fundamental basis for the observed correlation in
their values for the thrombin complexes.

A number of groups have done docking and
screening method validations on thrombin [12, 14,
33–40], with a focus on how the docking and scor-
ing methods affect the results. In particular, Stahl
and Rarey [33] present a detailed analysis of four
different scoring functions in combination with the
docking tool FlexX, using thrombin as one of their
targets. Depending on the scoring function used, 20–
70% of the 67 known thrombin ligands are among the
top ranking 10% of their screening database of about
10000 compounds. This percentage improves to 80%
when using a combined scoring function. Baxter et al.
[34] test the docking accuracy of PRO_LEAD on 70
protein-ligand complexes including 6 thrombin struc-
tures, resulting in 79% of the ligands being docked
within 2.0 Å RMSD. This program also provides a
reasonable separation between the docked scores of
the 43 known thrombin ligands and 10000 random
molecules from the screening database, with 84% of

the known ligands ranking among the top scoring 10%
of docked molecules. Knegtel et al. [35] compare the
performance of DOCK 4.0 and FlexX 1.5 by docking
32 known ligands to thrombin. For ∼40% of the lig-
ands, fully flexible docking yields orientations within
2 Å of the known binding modes. This increased lig-
and conformational sampling in DOCK is found to be
comparable to rigid docking of about 800 conformers
per ligand and increases the docking accuracy some-
what, at the expense of an additional 20 minutes’ run
time per compound. In another study, Knegtel et al.
[36] use DOCK 4.0 to identify thrombin inhibitors
from a database of 32 known inhibitors, ten chemi-
cally similar but inactive compounds, and 1000 cor-
porate database compounds. The performance is again
scoring-function dependent, with 78–94% of actives
being ranked among the 10% best scoring molecules,
but neither scoring function gave a good differentia-
tion between actives and inactives among the top scor-
ing compounds. In the results presented here, SLIDE
screening on the ∼15,000 molecules of the combined
thrombin ligand and random CSD compound database
identified 64–67% of thrombin ligands (depending on
whether SLIDE score or DrugScore was used as the
metric) within the top 0.7% of screened compounds.
The runtime was about 17 hours for this screening.
Although the runtime is determined primarily by the
template size, other factors like ligand size and number
of rotatable single bonds are also influential. While
it is risky to compare methods using different ligand
database sizes and degrees of molecular diversity (as
described above), these results give some idea of the
state of the art for molecular screening and docking of
ligands for thrombin and GST.

Other groups have also investigated the influence
of protein or ligand representation on docking re-
sults. Fradera et al. [37] test two ligand similarity-
driven flexible docking approaches by modifying
DOCK 4.0 to include the molecular-field matching
program MIMIC [41]. The modified methods out-
perform DOCK by improving the quality of the 31
thrombin ligand dockings by 1 Å RMSD on average
and by identifying 1.5–2 times more active molecules
among the top-ranked 10% of molecules, for each of
the three screening databases used. Their results with
MIMIC/DOCK tend to be better than results of DOCK
alone and take far less time, but prove to be rather
dependent on the choice of the reference ligand. Fox
and Haaksma [38] test their approach of combining
GRID [16] to map the binding site of thrombin and
UNITY (TRIPOS, Inc.) to do a flexible 3D database
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search for benzamidine-based thrombin inhibitors, us-
ing a database of in-house thrombin inhibitors and
a subset of ACD compounds. The method provides
accurate docking orientations for 90% of the x-ray
conformations of the known inhibitors, although the
docking accuracy drops considerably in the case of
CORINA-generated conformers [42].

Glutathione S-transferase has been less widely
studied as a docking and screening target, although
it has been included in some larger docking valida-
tions [12, 14, 43]. There are at least 11 different GST
isozymes with different substrate specificities, which
complicates the comparisons. Koehler et al. [44] use
an interesting approach to decipher the key determi-
nants of GST isozyme selectivity. Based on finding
that glutathione (GSH) binds to all isozymes in a
single bioactive conformation, they superimpose the
available GST x-ray structures from the PDB using
the bound ligands rather than the protein backbones
to compare their binding sites. Their conclusion that
the shape and surface hydrophobicity of the binding
site are the key determinants of differences in ligand
specificity between GST isozymes can be exploited
in finding new, more isozyme-specific inhibitors by
virtual screening. Such isozyme-specific differences
would appear directly in SLIDE’s knowledge-based
protein templates for different GST isozymes, provid-
ing a convenient way to screen for ligands that bind
well to one template/isozyme but not another.

Conclusions

Our results show that improving the representation
of hydrogen-bonding and hydrophobic interaction
points on the ligand and protein by a knowledge-
based approach, as implemented in SLIDE, can
significantly improve both the quality of docking
and the docking scores of known ligands relative
to randomly-selected molecules. The resulting un-
biased protein template can also provide significant
insights into the binding and specificity determi-
nants of the protein, and thus provide a structure-
based design template for optimizing ligand functional
groups. SLIDE v. 2.0, including source code, is avail-
able to academic and industrial researchers; please
see http://www.bch.msu.edu/labs/kuhn/web/projects/
slide/home.html.
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